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Abstract

Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing
technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by
recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and
the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells
that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of
vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed
communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m22 to 5.3 g m22

with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg21 to 652 mg kg21. The modified
chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear
model involving MCARI had the highest coefficient of determination (R2 = 0.73) and accuracy of prediction (RMSE= 104.2 mg
kg21). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from
120.2 mg kg21 to 106.8 mg kg21 respectively. The traditional broadband normalized difference vegetation index (NDVI),
one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R2 = 0.70 and RMSE= 110.1 mg kg21)
similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large
areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable.
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Introduction

Oil is a crucial energy resource and vital industrial raw material.

Most oil is produced on land [1]. With increasing industrial

production, oil pollution has become a serious worldwide

environmental problem, especially at the oil mining stage in the

field. It has many detrimental effects on the composition, structure

and functioning of terrestrial ecosystems [2,3,4,5], including loss of

biodiversity [6]. Oil pollutants also transfer via food chains and

eventually harm human health [7]. In addition, residual oil

hydrocarbons can persist in the soil for decades [3,8] and have

a chronic effect on ecosystems and human beings. Therefore, it is

crucial to monitor oil pollution accurately and quickly in areas

where oil is produced.

Oil pollution at the mining stage is usually monitored by field

sampling of soil, water, atmosphere and vegetation, and laboratory

analysis of oil pollutants. However, these methods, especially when

applied in large areas, are difficult, time-consuming and expensive.

Remote sensing can cover large areas simultaneously and

periodically in a non-destructive fashion, and offers a valid

alternative to traditional ground-based methods [9,10,11]. Among

remote sensing data, hyperspectral data consisting of hundreds of

contiguous spectral bands narrower than 10 nm throughout the

visible-infrared spectrum could prove to be invaluable in de-

veloping environmental monitoring capabilities [12].

The reflectance of a leaf is governed by its pigment concentra-

tions, morphological and anatomical properties, water content and

other biochemical properties [13,14]. Canopy reflectance of plants

is determined by the optical properties of leaves, and is modified

by leaf area index (LAI), the amount of green biomass, canopy

architecture and leaf angle distribution [15,16]. Alterations in

these variables caused by oil pollution and other environmental

stresses induce changes in canopy reflectance that can be detected

by remote sensors and might be used as indicators for oil pollution

of soils [10,17,18]. However, the spectral signal captured by

sensors includes not only spectral characteristics of plants, but also

optical properties of soils and air within the field of view [19,20].

Remote sensing by sensors is also influenced by viewing angle and

illumination geometry [16]. Therefore, vegetation indices (VIs)

[19,21] are proposed to enhance the spectral contribution from

green plants and minimize those from soil, air and other external

factors.

Vegetation indices combine two or more spectral bands to

quantitatively characterize the physiological status of plants [22].
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According to spectral resolution of data, vegetation indices can be

classified into two classes: multispectral vegetation indices (MVIs)

and hyperspectral vegetation indices (HVIs) [21]. Multispectral

vegetation indices are first formulated with multispectral bands

(such as those of Landsat ETM+ and NOAA AVHRR), but they

can also be calculated from hyperspectral data using the

reflectance at specific wavelengths [17,21]. Multispectral vegeta-

tion indices calculated in these two fashions can be defined as

broadband multispectral vegetation indices (BMVIs) and narrow-

band multispectral vegetation indices (NMVIs). The normalized

difference vegetation index (NDVI) is one of the oldest and most

widely used multispectral vegetation indices [23]. Hyperspectral

vegetation indices are proposed based on the absorption and

reflectance properties in specific regions of the high resolution

spectrum [24,25].

Hyperspectral remote sensing not only provides new data for

the development of vegetation indices, but also can detect some

characteristics that traditional multispectral remote sensing can-

not. Red edge is a unique and most notable feature of green plants,

and cannot be measured using spectral bands broader than 100

nm. It is a sharp change in reflectance between low red reflectance

caused by chlorophyll absorption near 680 nm and high infrared

reflectance governed by internal leaf scattering near 750 nm [26].

Three parameters, red edge position (REP), slope (RES) and area

(REA), can be calculated using the first derivative of reflectance.

Red edge position is the maximum of the first derivative of

reflectance between 680 nm and 750 nm. Red edge slope and red

edge area are the maximum and integral of the first derivative in

this region. In addition, the linear four-point interpolation

technique [27], the Gaussian function fitting technique [28] and

the polynomial fitting technique [21,29] have been proposed to

parameterize the red edge.

Remote sensing has previously been used to detect stresses in

plants [30,31,32]. Visible reflectance increased consistently in

stressed leaves for eight stress agents and among six vascular plant

species [30], and ratios of leaf reflectance were further evaluated as

indicators of these stresses for these plants [31]. Remote sensing

has been used to estimate metal pollutions in soils [17,33]. Rosso

et al reported that lightweight petroleum induced significant

changes in reflectance between 500 nm and 1550 nm [18].

Current and older foliage from spruce/fir forest affected by air

pollution showed an approximately 5 nm shift away from the

normal value of red edge position toward shorter wavelengths

[34]. A hyperspectral derivative ratio in the red edge region has

been used to identify plant stress due to gas leaks before visible

symptoms were observed [32]. Although vegetation indices and

red edge have been employed to estimate soil metal contamination

[10,17,33], there are very few studies concerning the estimation of

soil oil pollution by remote sensing. Therefore, it is necessary to

evaluate current remote sensing methods and to develop a suitable

method for oil pollution monitoring.

As the youngest land and one of the largest wetlands in China,

the Yellow River Delta provides many ecological functions, such

as habitats for numerous species [35]. However, this region is

widely subjected to serious crude oil contamination due to oil

mining. Shengli oilfield, as the second largest in China, lies mainly

in this region. Since oil production began in 1964, intensive

exploitation of oil for decades has produced detrimental effects on

wetland ecosystems. Shengli oilfield discharges more than 100 000

tons of oily sludge into soils each year [36], and oil pollution has

become the main anthropogenic source of ecological risks [37].

Therefore, estimating oil pollution accurately and quickly is

urgently needed to enable control of its adverse effects and protect

the remaining wetlands.

In this study, the feasibility of remote sensing to estimate soil oil

pollution in the Yellow River Delta, Shandong Province, eastern

China was investigated, and an effective remote sensing method

was developed to monitor oil pollution accurately and quickly.

This will be useful for establishing an early warning system and

mitigating the harmful effects of oil pollution.

Materials and Methods

Ethics Statements
The field study was conducted with the permission of the Hekou

Oil Production Plant, Shengli Oilfield Company, SINOPEC and

the owners of the lands around the oil wells. No protected plant

species were present in quadrats of the plant communities.

Site and Sample Design
This study was carried out in the Chengdong Oilfield belonging

to the Shengli Oilfield Company (118u34938.350 E-118u38908.530

E, 37u57934.070 N-38u01928.500 N) (Figure 1). The sites are

adjacent to the ancient Yellow River, the National Natural

Reserve of the Yellow River Delta and the National Forest Park of

the Yellow River Estuary. The region is sparsely populated and oil

exploitation is the major production activity. Reeds dominate this

region and several plant species grow under the reeds (Figure 2).

The soil is a saline soil.

A field study was conducted in August 2009. Sample plots

around each of five oil wells and three sample plots (bare soil) away

from oil wells were established. Another bare soil plot was

established for testing spectroradiometer. Soil color was uniform in

all study sites. The mining history of the oil wells ranged from 7 to

13 years, and had an average of 10 years, with a standard

deviation of 2.5 years. All wells produced heavy oils. Three sample

lines were laid out in directions away from the wells. One line was

set up along the prevailing wind direction, while the other two

were established at a 120u angle from the first line to represent

different oil pollution conditions in different directions. Along each

sample line, three 1m61m quadrats were established around each

point at different distances from each oil well, 0 m, 5m, 10m, 20m,

30m, 50m, and 100m. This sampling procedure represents

possible differences in oil pollution with different distances from

the oil wells. At same distance points to oil well center in three lines

of each oil well, e.g. at 5 m, data of three quadrats were averaged.

Therefore, there are totally seven averaged data for one well.

Reflectance Measurement
The reflectance spectra of each quadrat and the bare soils were

recorded using a field spectroradiometer ASD FieldSpec FR

(Analytical Spectral Devices, Inc., Boulder, Colorado, USA). This

spectroradiometer was fitted with a fiber optic probe having a 25u
field of view. It covers the spectrum between 350 nm and 2500 nm

and its spectral sampling interval is 1.4 nm for the region 350–

1000 nm and 2 nm for the region 1000–2500 nm. Its spectral

resolution (full-width-half-maximum) is 3 nm for the region 350–

1000 nm and 10 nm for the region 1000–2500 nm. The spectra

were then interpolated by the ASD software to produce readings

at every 1 nm. Measurements were taken between 10:00 and

12:00 am on clear days without clouds and winds. Scans were

taken from a height of 50 cm above the canopies of the plant

communities looking towards the nadir position so that the field of

view was a circular area having a diameter of about 22 cm. Ten

replicates were measured for each quadrat. Before measurement of

each quadrat, the radiance of a white standard panel coated with

BaSO4 and the dark current (Systematic noise from the instrument

electronics and detectors) were recorded for reference and

Remote Sensing Assessment of Soil Oil Pollution
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optimization of measurement [18,32]. Because the energy incident

on plant or soil is approximately equivalent to that reflected by the

white panel, the reflectance (r, %) can be calculated as follows

[38].

r~
target-darkcurrent

reference-darkcurrent
|100

where, ‘target’ is the energy reflected off plant canopies or bare

soils, and ‘reference’ is that reflected off BaSO4 white panel.

After the individual spectra of reflectance were inspected for

bad data and outliers, they were averaged by quadrat [38]. The

averaged reflectance values were used to calculate vegetation

indices. The reflectances of broadbands similar to Landsat ETM+
were calculated as the average reflectance of all wavelengths in the

corresponding bands of spectroradiometer ASD FieldSpec FR.

Aboveground Biomass and Species of the Plant
Communities

After measurement of canopy reflectance, the aboveground

portion of plants in each quadrat was harvested. After the fresh

aboveground material was weighed, it was dried at 80uC for 72 h

and then reweighed. Species in every quadrat were recorded

(Table 1).

Figure 1. The location of the study site in eastern China. The spatial extent of the third panel is approximately 7 km by 8 km.
doi:10.1371/journal.pone.0054028.g001

Figure 2. Reed communities with different oil pollution.
doi:10.1371/journal.pone.0054028.g002
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Soil Total Petroleum Hydrocarbon Measurement
Three samples from the top 30 cm of soils were gathered from

each quadrat. Soil total petroleum hydrocarbon (TPH) concentra-

tions in the samples were measured using the infrared spectro-

photometry method [39,40]. In this method, dried (60uC/24 hour)

soil samples (10 g) were extracted with 20 mL of carbon

tetrachloride for 30 min by ultrasonication (40 kHz) at 40uC.

The infrared absorption of the extract was measured at the band

of 2930 cm21. The amount of TPH was calculated as the

difference between the amount of total TPH in the polluted soil

minus the biogenic TPH content in the control [39].

Multispectral Vegetation Indices (MVIs)
a. Normalized Difference Vegetation Index (NDVI). This

index has been proposed to eliminate seasonal sun angle

differences and to minimize the effect of atmospheric attenuation

[41].

NDVI~
(rNIR{rR)

(rNIRzrR)

Where NIR and R denote the near-infrared band and red band,

respectively.

b. Transformed Soil Adjusted Vegetation Index

(TSAVI). Many vegetation indices (such as TSAVI and SAVI2)

rely on the existence of the soil line. TSAVI is a measure of the

angle between the soil line and the line that joins the vegetation

point and the intercept of the soil line [42].

Table 1. Species in every quadrat in study site.

Oil wells Quadrats Species

1 1 Phragmites australis

2 P. australis, Tamarix austromongolica (Rare)

3 P. australis, Suaeda. salsa

4 P. australis, S. salsa, Cynanchum chinense

5 P. australis, S. salsa, C. chinense

6 P. australis, S. salsa, Aeluropus sinensis

7 P. australis, S. salsa, T. austromongolica (Rare), C. chinense (Very Rare), Setaria viridis (Very Rare)

2 1 P. australis, A. sinensis (Rare)

2 P. australis, Scorzonera mongolica (Rare)

3 P. australis, S. salsa

4 P. australis, S. salsa, Limonium bicolor (Very Rare)

5 P. australis, S. salsa, C. chinense (Rare)

6 P. australis, S. salsa, Apocynum venetum (Rare)

7 P. australis, S. salsa, C. chinense (Rare), S. viridis (Very Rare)

3 1 P. australis

2 P. australis, A. sinensis (Rare)

3 P. australis, S. salsa, S. viridis (Very Rare)

4 P. australis, S. salsa, C. chinense (Very Rare)

5 P. australis, S. salsa

6 P. australis, C. chinense (Rare), S. viridis (Very Rare)

7 P. australis, S. salsa, C. chinense (Rare), S. viridis (Very Rare)

4 1 P. australis

2 P. australis

3 P. australis, A. sinensis (Rare)

4 P. australis, S. viridis (Rare)

5 P. australis, S. salsa, C. chinense (Very Rare)

6 P. australis, S. salsa, C. chinense (Rare)

7 P. australis, S. salsa, C. chinense (Rare), S. viridis (Rare)

5 1 P. australis

2 P. australis

3 P. australis, S. salsa, S. viridis (Very Rare)

4 P. australis, S. salsa

5 P. australis, S. salsa, S. viridis (Rare)

6 P. australis, S. salsa, S. viridis (Rare), C. chinense (Very Rare)

7 P. australis, S. salsa, S. viridis (Rare), C. chinense (Very Rare)

doi:10.1371/journal.pone.0054028.t001
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TSAVI~a
rNIR{arR{b

arNIRzrR{ab

Where a and b represent the slope and intercept of the soil line,

respectively. For a= 1 and b= 0, TSAVI is equivalent to NDVI.

TSAVI equals 0 for bare soil and is close to 1 for high LAI.

The soil line is a linear relationship between bare soil reflectance

observed in two different wavebands, and bare soil reflectance lies

on a single line in the space generated by the wavelength bands.

The soil line usually is derived from bare soil reflectance in red and

near-infrared wavebands [42].The soil lines were obtained using

broadband and narrowband data [42] of bare soils from 16

quadrats that we investigated in field.

The broadband soil line is:

rNIR~0:01581z1:1141rR

The narrowband soil line is:

r800~0:01624z1:08661r680

Where the numbers in the subscript represent the wavelengths

used for calculation.
c. The second version of Soil Adjusted Vegetation Index

(SAVI2). SAVI2 uses the ratio of the intercept of the soil line b to

its slope a as the soil adjustment factor [43].

SAVI2~
rNIR

rRzb=a

d. Atmospherically Resistant Vegetation Index

(ARVI). ARVI uses the difference in the radiance between the

blue and the red bands to eliminate the atmospheric effect on the

red band [20]. This correction enhances the resistance of ARVI to

atmospheric effects (in comparison to NDVI).

ARVI~
rNIR{½rR{c(rB{rR)�
rNIRz½rR{c(rB{rR)�

~
rNIR{½rR{(rB{rR)�
rNIRz½rR{(rB{rR)�

Where c equals 1, this value is suitable for vegetated areas with

small to moderate aerosol particle size and for arid regions with

large particle size, and the subscript B denotes the blue band.
e. Optimization of Soil-Adjusted Vegetation Index

(OSAVI). OSAVI uses a different soil adjustment factor

(L= 0.16) [44].

OSAVI~(1z0:16)
(rNIR{rR)

(rNIRzrRz0:16)

Multispectral vegetation indices were calculated with broad-

band and narrowband data in this study. Broadbands were blue

(450–515 nm), red (630–690 nm) and near-infrared (750–900 nm),

and narrowband were blue (470 nm), red (680 nm) and near-

infrared (800 nm) (Figure 3).

Hyperspectral Vegetation Indices (HVIs)
a. Pigment Specific Simple Ratio (PSSR) and Pigment

Specific Normalized Difference (PSND). The optimal in-

dividual wavelengths for the estimation of carotenoids are

identified empirically as 470 nm [24].

PSSRc~
r800
r470

PSNDc~
r800{r470
r800zr470

These indices provide a measure of the depth of the pigment

absorption relative to the highly reflective near-infrared plateau.

The near-infrared wavelength of 800 nm can be considered to

minimize the effects of radiation interactions at the leaf surface

and internal structures in mesophyll.

b. Modified Chlorophyll Absorption Ratio Index

(MCARI). MCARI is a modification of the Chlorophyll

Absorption Ratio Index, which can minimize the effects of non-

photosynthetic materials on the estimation of absorbed photosyn-

thetically active radiation. The MCARI is the depth of the

chlorophyll absorption at 670 nm relative to the reflectance at 550

nm and 700 nm [25].

MCARI~
r700
r670

|½(r700{r670){0:2|(r700{r550)�

The ratio (r700/r670) can minimize the combined effects of the

underlying soil reflectance and the canopy non-photosynthetic

materials [45].

c. Transformed Chlorophyll Absorption in Reflectance

Index (TCARI). The formula of TCARI is similar to that of

MCARI with a different position of the ratio (r700/r670) [45].

TCARI uses this ratio to counteract the background influence only

on the difference (r700 2 r550).

TCARI~3|½(r700{r670){0:2|(r700{r550)|
r700
r670

�

d. Maximum first derivative spectrum (deRES). deRES

was calculated as the maximum of the first derivative of the

reflectance between 680 nm and 750 nm [26,46].

e. Fifth-order polynomial fitting technique (fpnRES). A

fifth-order polynomial function is fitted to the reflectance spectrum

between 680 and 750 nm [29].

r~azb1lzb2l
2zb3l

3zb4l
4zb5l

5

Where l is the wavelength, a, b are parameters obtained by fitting.

fpnRES was determined as the maximum of the first derivative of

the fitted reflectance.

f. c2RES. Because there are two or more peaks in the first

derivative reflectance of the red edge region, the peaks near 720

nm are identified as the main peak or dominant peak [21,26].

c2RES was calculated as the maximum of the first derivative near

720 nm.

g. Sum of the first derivative (sumREA). The sumREA

was calculated as the sum of the first derivative of reflectances from

680 nm to 750 nm using data with a 1 nm interval from ASD

software.

h. Gaussian function fitting technique (GauREA). The

first derivative of reflectance was fitted with the Gaussian function.

Remote Sensing Assessment of Soil Oil Pollution
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y~y0zA exp {
(l{lc)

2

2w2

 !

Where y is the first derivative of reflectance, and y0, A, lc and w are

four parameters that determine the shape of the curve of the first

derivative and are calculated by iteration.

Then the fitted curve was integrated as GauREA. This method

is a modification of the inverted-Gaussian reflectance model that

was used to fit the reflectance in the spectral region of 670–800 nm

[28].

i. Sixth-order polynomial fitting technique (spnREA). A

sixth-order polynomial function is fitted to the reflectance

spectrum between 680 and 750 nm [21].

r~azb1lzb2l
2zb3l

3zb4l
4zb5l

5zb6l
6

spnREA was calculated as the integral of the first derivative of the

fitted reflectance.

The calculation of RES and REA were accomplished using

OriginPro 8.5.1 (OriginLab Corporation, Northampton, MA,

USA).

Regression Analysis and Validation
Soil TPH concentrations, aboveground biomass, vegetation

indices at the same distance from the oil wells in the same plot

were averaged. The curve estimation module in IBM SPSS

Statistics 19 was used to fit the relationship of aboveground

biomass to soil TPH concentrations, and that of the reflectance at

specific wavelengths, vegetation indices to soil TPH concentra-

tions. Among 35 data of five wells, 30 data were used to fit above

regression equations, other five data were used to validate the

regression equations. The best equations were chosen from the

linear, logarithmic, S, exponential, inverse and power models. The

equations with a high R2, small root mean square error (RMSE)

and good validation were regarded as good (Table 2).

To evaluate the regression equations performance, a measure

used by Qiu et al. (1998) [47] was adopted to examine the

correlation between the estimated and observed data. Employing

this method, the observed and estimated data were used to derive

a linear regression equation (y= a+bx), which was then compared

with the 1:1 observed data line (y= x). Residual plots were used to

evaluate the regression equations’ performance.

Results

Effect of Soil Oil Pollution on Aboveground Biomass of
the Reed Community

Soil TPH concentrations ranged from 9.45 mg kg21 to 652 mg

kg21 with an average of 190 mg kg21 and a standard deviation of

200 mg kg21. Residual hydrocarbons were significantly and

negatively correlated with the aboveground biomass of the reed

community, which decreased from 1076.5 g m22 to 5.3 g m22

(Figure 4).

Effect of Soil Oil Pollution on Reflectance of the Reed
Community

Reflectance of reed community under three concentrations of

soil TPH (Figure 3), which representing low, intermediate and

high levels of oil pollution, shows that oil pollution decreased

reflectance in the near-infrared between 800 nm and 1300 nm.

However, reflectance in the other spectral bands did not follow the

variations in TPH concentrations.

Figure 3. Reflectance of bare soil and reed communities with different soil TPH concentrations. Horizontal lines denoted broad
wavebands used to calculate BMVIs. From left to right, they were blue (450–515 nm), red (630–690 nm) and near-infrared (750–900 nm). Vertical lines
indicated wavelengths used to calculate NMVIs. From left to right, they were blue (470 nm), red (680 nm) and near-infrared (800 nm). The reflectance
of bare soil was the average of 16 quadrats of bare soil. Each reflectance curve of vegetation was the average of 3 quadrats of reed communities at
the same distance to the oil well in the same plot. The numbers in the legend were soil TPH concentrations (mg kg21).
doi:10.1371/journal.pone.0054028.g003

Remote Sensing Assessment of Soil Oil Pollution
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There were significant differences between reflectance of the

reed community and that of bare soils (Figure 3). In the visible

band and near-infrared band of 1400–2400 nm, the reflectance

curve of the reed community was lower than that of bare soils. For

the near-infrared band between 800 nm and 1300 nm, the

difference in reflectance between the reed community and bare

soils was smaller.

Effect of Soil Oil Pollution on the First Derivative of
Reflectance of the Reed Community

The first derivative of reflectance in the region of red edge

distinguished bare soil and reed communities with different soil

TPH concentrations (Figure 5). The first derivative of reflectance

of bare soil was approximately a constant and close to zero,

whereas that of the reed community was larger and had three or

four asymmetric peaks. The first derivative of reflectance from

three soil TPH concentrations shows that red edge slope and red

edge area decreased with the increase in soil TPH concentrations.

Performance of Spectral Indices for Estimating Soil Oil
Pollution

Reflectances at specific wavelengths performed poorly for

indicating soil oil pollution except for that at 680 nm, and

reflectances at visible wavelengths performed better than that at

near-infrared wavelengths (Figure 6).

Compared with reflectances at single wavelengths, vegetation

indices estimated soil TPH concentrations better, and most

coefficients of determination of them exceeded 0.65 (Figure 7,

Table 2). Compared with vegetations indices induced from red

edge, other vegetation indices achieved comparable results and

performed better. The results from red edge slope and red edge

area were also comparable.

Table 2. Regression equations of different spectral indices and soil TPH concentrations (y, mg kg21) in the reed communities.
p,0.001.

Category Spectral indices (x) Regression equations R2
Root mean square
error (RMSE, mg kg21)

BMVIs Broadband TSAVI y = 540.32677.7x 0.70 109.3

Broadband SAVI2 y = 527.02283.9lnx 0.67 114.3

Broadband ARVI y = 461.52591.0x 0.68 112.3

Broadband OSAVI y = 597.82928.7x 0.68 112.7

NMVIs Narrowband SAVI2 y = 519.92271.3lnx 0.69 112.0

Narrowband ARVI y = 453.72557.4x 0.70 109.4

Narrowband OSAVI y = 589.72899.4x 0.69 110.6

HVIs PSSRc y = 776.22327.1lnx 0.70 108.7

PSNDc y = 101721205x 0.71 107.5

TCARI y = 587.325136x 0.70 110.1

RES fpnRES y =212072242.2lnx 0.64 120.2

c2RES y =213522269.8lnx 0.67 112.9

REA GauREA y=2311.82264.2lnx 0.64 119.1

spnREA y=2316.62266.6lnx 0.65 118.7

doi:10.1371/journal.pone.0054028.t002

Figure 4. Relationship between soil TPH concentrations and
aboveground biomass of the reed communities.
doi:10.1371/journal.pone.0054028.g004

Figure 5. The first derivative of reflectance of bare soil and
reed communities with different soil TPH concentrations.
Numbers in the legend were soil TPH concentrations (mg kg21).
Vertical lines and numbers indicated the wavelengths of peaks (nm).
doi:10.1371/journal.pone.0054028.g005
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MCARI was the best among the 20 vegetation indices (Figure 7,

8, 9, Table 2). Among multispectral vegetation indices, the best

estimations were given by NDVI and TSAVI, followed by

narrowband ARVI. Narrowband NDVI and TSAVI were slightly

better than their broadband versions. For hyperspectral vegetation

indices, MCARI yielded the highest accuracy of prediction.

PSNDc, PSSRc and TCARI could also estimate oil pollution well,

and their coefficients of determination were larger than or

equivalent to 0.70. Among red edge slope parameters calculated

using different methods, deRES gave the best estimation of oil

pollution. Red edge area values calculated using different methods

achieved similar results (Figure 7, 8, 9, Table 2). It was clear from

Figure 8 and 9 that the validation was in agreement with above

results and residual error was acceptable.

Discussion

Persistence Times of Oil Pollutants in Soil
Hydrocarbons may persist in soils for 39 years and aboveground

biomass was continuously decreased in hydrocarbon-contaminat-

ed areas [3]. Although it is recognized that reed dominated

wetlands have potential for mitigating hydrocarbon pollution, reed

biomass significantly decreased in the early stages of serious oil

pollution [40], while very light short-term oil pollution led to an

increase in reed biomass because of the added increment of carbon

[48]. Further, ecological effects caused by long-term oil pollution

were different from those resulting from short-term pollution [2].

In this study, there were residues of petroleum hydrocarbons

around oil wells with a history of approximately 10 years, and

aboveground biomass of the reed community decreased with

increasing oil pollution (Figure 4). This result indicates that oil

pollution resulted in significant change for the plant communities.

Effects of Oil Pollution on Spectral Characteristics
Changes in the physiological status of plants caused by pollution

and other environmental stresses can alter their spectral

characteristics [33]. Also, reflectance at different wavelengths

might show different sensitivities to these stresses [30]. Visible

reflectance increased consistently in leaves subjected to eight

stresses including pollution for six vascular plant species, while

infrared reflectance was comparatively unresponsive to these

stresses [30]. In this study, oil pollution altered the spectral

characteristics of the reed community. Oil pollution increased the

reflectance of light in the visible and near-infrared bands greater

than that of 1400 nm, and decreased that in the near-infrared

between 800 and 1300 nm (Figure 6). These effects were more

significant for the reflectance of visible light than for that in the

near-infrared (Figure 6). Thus, visible reflectance rather than that

Figure 6. Performance of reflectance at specific wavelengths for estimating soil TPH concentrations. RMSE was the root mean
square error. p,0.001.
doi:10.1371/journal.pone.0054028.g006
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in the near-infrared was the more sensitive and reliable indicator

of stresses.

Generally, changes of reflectance of plant canopy are mainly

governed by leaf pigment concentrations, morphological and

anatomical properties, water content and other biochemical

properties [13,14], and also can be modified by leaf area index,

the amount of green biomass, canopy architecture and leaf angle

distribution [15,16]. Although most of these parameters were not

measured in this study, aboveground biomass decrement (Figure 4)

and reed communities coverage decrement (Figure 2) resulted

from oil pollution might imply changes of leave properties such as

leave pigment concentrations, water content and leaf angle

distribution, and therefore leave reflectance were changed.

Performance of Various Indices for Indicating Oil
Pollution

Effects of soil on canopy reflectance caused a lower accuracy of

prediction for estimating soil oil pollution using reflectance of

single wavelengths compared with those using vegetation indices

[22]. Our results also agree well with this conclusion (Figure 6, 7,

Table 2). Therefore, it is necessary to mitigate the effect of soil on

reflectance.

Most of the selected vegetation indices utilize red reflectance

dominated by chlorophyll absorption and near-infrared reflec-

tance governed by leaf scattering. These combinations effectively

enhance the vegetation signal and suppress soil background effects

[21]. Therefore, these indices more accurately characterize the

spectral changes in canopy reflectance of vegetation under oil

pollution. The MCARI and TCARI indices introduced a green

band into their formulae and quantified the variations in the

triangular area comprising the green peak, red reflectance

minimum and near-infrared reflectance shoulder [21,25,49].

Therefore, these two indices also could estimate oil pollution well,

and MCARI even produced the most accurate prediction of soil

TPH concentrations in this study (Figure 7, 8, 9).

Multispectral vegetation indices and hyperspectral vegetation

indices have also been used to estimate soil Zn concentrations.

Compared to BMVIs, their narrowband variants showed a small

improvement [17]. Similar results were found for the estimation of

LAI and canopy chlorophyll density, with BMVIs yielding better

predictions than their narrowband variants and hyperspectral

vegetation indices [21]. In this study, all categories of vegetation

indices achieved comparable accuracy of prediction for soil TPH

concentrations (Figure 7, 8, 9, Table 2). These results indicate that

Figure 7. Performance of the leading vegetation indices for estimating soil TPH concentrations. NDVI, TSAVI, MCARI, deRES and sumREA
denoted Normalized Difference Vegetation Index, Transformed Soil Adjusted Vegetation Index, Modified Chlorophyll Absorption Ratio Index, red
edge slope calculated using maximum first derivative spectrum and red edge area calculated using the sum of the first derivative, respectively. RMSE
was the root mean square error. p,0.001.
doi:10.1371/journal.pone.0054028.g007
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NMVIs and hyperspectral vegetation indices had no absolute

advantage over BMVIs.

Red edge parameters have the same theoretical foundation as

the other vegetation indices consisting of red reflectance and near-

infrared reflectance, because the red edge effect results from

chlorophyll absorption of red light and leaf scattering of near-

infrared light [21]. Because the first derivative of reflectance of

bare soil was approximately a constant and close to zero, the

derivative calculation of red edge parameters has the advantages of

enhancing vegetation signals and suppressing the effects of bare

soils [50]. Therefore, red edge slope and red edge area could

estimate TPH concentrations with a higher accuracy than did the

reflectance of single wavelengths (Figure 6, 7, 8, 9, Table 2) [17].

Compared to other vegetation indices, red edge parameters had

a poorer performance in this study (Figure 7, 8, 9, Table 2). Firstly,

this was dependent on their capacity to parameterize red edge.

Polynomial and Gaussian function fitting have usually been used

to calculate red edge slope and red edge area values. These

methods often have the effect of smoothing out small spectral

features that may contain important pollution-related information

[32,33]. In addition, because the first derivative curve in the region

of red edge is asymmetric (Figure 5) and the Gaussian function is

symmetric, Gaussian function fitting will average out such

asymmetry [21]. Also, the existence of several peaks makes it

more difficult to parameterize the red edge. For example, several

plants from the greenhouse and the field also showed two peaks at

around 700 and 725 nm [26]; A minor peak at 700 nm and

a double peak around 720 nm were identified for annual bluegrass

and perennial ryegrass [33]; One grass and two crops had four

peaks at 702 nm, 718 nm, 725 nm and 735 nm in the red edge

region [32]. Similarly, three or four peaks were present in the

region of 700–730 nm in this study (Figure 5). However, methods

of fitting assume that there is only a single peak in the red edge

region. This might be another reason for the poor predictive

capability of red edge in this study.

Therefore, traditional BMVIs such as NDVI still have a great

potential for application in environmental monitoring because of

their low cost, and more available data resources, such as Landsat

TM, SPOT etc. compared with hyperspectral data [21], although

Broadband NDVI has a lower R2 (0.70) than that of MCARI

(0.73). NMVIs and hyperspectral vegetation indices could be used

to guide the design of field portable radiometer for vegetation

monitoring [51], and only reflectance values at two or three

wavelengths are required to quantify the growth status of

vegetation and to estimate soil oil pollution.

Conclusions
Residual petroleum hydrocarbon resulting from oil exploitation

of approximately 10 years’ duration was associated with lowered

aboveground biomass of plant communities dominated by reeds

and altered their spectral characteristics. Spectral changes of the

reed community under oil pollution provide an essential pre-

Figure 8. Comparison of observed and simulated TPH concentrations (mg kg21). The dashed line showed the 1:1 relationship, the solid
line, the fitted regression equations. A, B, C, D, E, F denoted the validation for the regression equations derived from broadband NDVI, narrowband
NDVI, narrowband TSAVI, MCARI, deRES and sumREA, and abbreviations were the same as Figure 7.
doi:10.1371/journal.pone.0054028.g008
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requisite for the estimation of soil oil pollution. Compared to

reflectance at specific wavelengths, vegetation indices better

characterized these spectral alternations. Therefore, they could

be used to estimate soil TPH concentration with a higher

accuracy. Among 20 vegetation indices, MCARI produced the

highest accuracy of prediction and traditional broadband NDVI,

one of the BMVIs, yielded a prediction similar to that of MCARI.

These results confirm that remote sensing has great potential for

estimating oil pollution in soils over large areas under appropriate

conditions. Traditional BMVIs still have great value for monitor-

ing soil oil pollution when hyperspectral data are unavailable.
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