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Considerable insights were recently gained into the history and

process of rice domestication. It becomes increasingly clear

that artificial and natural selections coupled with extensive

introgression have shaped the genomes of cultivated rice. The

interplay of these evolutionary forces gave rise to the cultivated

species, Oryza sativa, with divergent genomic backgrounds

from two wild species, O. rufipogon and O. nivara, governed by

a set of domestication alleles which had originated primarily at

one location of initial cultivation. The mechanistic

understanding of domestication suggests that the combination

of quantitative trait locus mapping, genome-wide association

study, and genome scan will be effective means for discovering

potentially valuable alleles from the cultivated and wild species.

The accumulation and appropriate sampling of germplasm

collections for these analyses should effectively grow the useful

allele pool, which combined with molecular breeding may get to

a point literally triggering the re-domestication of rice varieties

for sustainable food production
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Introduction
Food crops have gone through many stages of develop-

ment. The domestication of major cereal crops began

approximately 10 000 years ago in different continents,

which initiated a long-term evolutionary experiment giv-

ing rise to a number of new species adapted to the

agricultural system [1,2]. At the blink of evolution eyes

in the history of flower plants, these crop species have

become amazingly successful and occupied about five

percent of the earth’s land surface. With the development

of high-yield varieties as well as modern agricultural
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technologies, the crops are now supporting an ever-large

human population with ever-low frequencies of famine.

However, this success did not come without costs. While

continuing conversion of natural ecosystem into cropland

and increasing uses of synthetic fertilizer and pesticide

push up the crop yield, we apparently are running out of

options for meeting the growing needs for food. Mean-

while, the over uses of cropland with heavy fertilization

have severely reduced the quality and productivity of the

cropland. With the high-quality cropland and other

natural resources for food crop production getting in

the trend of decrease, finding ways to ensure sustainable

food production has become an increasingly important

and challenging problem for research [3]. In this paper,

we approach the problem from an evolutionary point of

view, especially with a focus on the origin and evolution

of Asian cultivated rice, Oryza sativa. By reviewing what

we have learned from studying the processes and mech-

anisms of rice domestication and improvement, we hope

to extract instructive information to help breeding rice

varieties for sustainable production (Figure 1).

The origin and evolution of cultivated rice was subjected

to considerable debate over the past several years. The

debate centered on whether the two major rice cultivars,

O. sativa ssp. indica and ssp. japonica, were derived from a

single ancestor or domesticated independently at differ-

ent locations [4–6]. Other evolutionary questions revol-

ving this issue included the origin, spreading, and fixation

of domestication related alleles. Answers to these ques-

tions are directly relevant to what we can learn from the

domestication mechanisms and how we apply this knowl-

edge to the future improvement of rice cultivars [7].

Below we will begin with the review of recent progress

toward understanding the origin and evolution of culti-

vated rice and then provide perspectives on rice breeding.

The origin of indica and japonica cultivars
It has long been recognized that there are two distinct

groups of rice cultivars, namely indica and japonica sub-

species of O. sativa, which differ in a series of morpho-

logical and physiological traits. The difference at the

genomic level was also revealed, with multiple lines of

evidence suggesting that the genomic cores of the two

subspecies have diverged for 200 000 years or longer [8–
10]. The fact that the divergence time markedly predates

the time of rice domestication suggests from the phylo-

genetic point of view that indica and japonica cultivars

were domesticated independently from differentiated
lications for cultivar improvement, Curr Opin Plant Biol (2013), http://dx.doi.org/10.1016/
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Figure 1
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Approaches for discovering valuable alleles for molecular breeding of

rice varieties for sustainable production. Circles in the lower portion of

the figure indicate two subspecies of cultivated rice, O. sativa ssp.

japonica and O. sativa ssp. indica, and two wild species O. rufipogon

and O. nivara. Sizes of the circles approximate relative genetic diversity

of each entity. Overlapping of the circles illustrates (but not intend to

precisely represent) shared genomic identify due to demography and/or

gene flow. Accessions of cultivars (modern and traditional, elicit and

landrace) and wild species are preserved in the germplasm collection

centers. From these collections, those with desirable phenotypes such

as tolerant to biotic and abiotic stresses, can be identified as cross

parents of genetic populations developed for QTL mapping and gene

cloning (toward left); diverse cultivars and O. nivara populations can be

genotyped (e.g. through low-coverage genome sequencing) to establish

panels for phenotyping and GWAS separately or at least partly together

(toward right); candidate genes can be identified by genome scan and

have to be substantiated by functional conformation (upward).
ancestral populations of the wild progenitors. This view-

point had gained growing acceptance until the cloning of

key domestication genes.

The first surprise was that the sh4 gene underlying the

reduction of grain shattering had a single origin [11,12]. To

reconcile the apparently conflict evidence coming from

genomic divergence versus domestication-gene uniform-

ity, two models of rice domestication were proposed [13].

The snowballing model hypothesized that there was a

single domestication leading to the development of an
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early cultivar with a suite of key domestication traits

including the reduction of grain shattering. This early

cultivar then hybridized with wild populations with

diverged genomes, leading to the fixation of the same

critical domestication alleles in cultivars of distinct geno-

mic background. Alternatively, indica and japonica were

domesticated independently from diverged wild progeni-

tors. The subsequent hybridization between them led to

the introgression and fixation of the same set of domesti-

cation alleles in cultivars with distinct genomic back-

ground. This was called the combination model.

No matter which model turns out to be more close to the

real domestication processes, there is one thing in com-

mon, that is, hybridization or introgression played an

essential role in shaping the present genetic and genomic

structure of cultivated rice [13–15,16�]. It was the inter-

play of artificial and natural selections that balanced the

fixation of domestication alleles and the maintenance of

genetic diversity of cultivated rice [16�,17]. Strong arti-

ficial selection on highly beneficial domestication alleles

drove them quickly across the genomic boundaries and

consequently fixed in the entire cultivar gene pool. Popu-

lation genetic simulation estimated that the highly

beneficial sh4 allele could have been fixed over a time

period as short as 100 years [18]. This is similar to the

breeding programs practiced in the modern agriculture

except that modern rice breeding was done purposely

from the chosen cross parents whereas domestication

practice done thousands of years ago was largely uncon-

scious.

During the domestication processes, natural selection

must have played an essential role in maintaining the

genetic diversity of rice cultivars. It is conceivable that

the genomic divergence between indica and japonica was

maintained and perhaps reinforced by natural selection in

different geographic regions. Regional differences in

climates and soil conditions to which wild progenitors

of indica and japonica genomic background adapted could

have been ecological factors driving the divergence.

There is a partial reproductive barrier between indica and

japonica. It is not known whether this barrier existed

between the genome donors of the cultivars or estab-

lished later on to help maintaining the identities of the

cultivars. Given that there had been extensive gene flow

at the early stage of rice domestication that facilitated the

fixation of domestication alleles across the entire culti-

vated gene pool and there has not been clearly documen-

ted postzygotic isolation between populations of the wild

progenitors, it seems likely that the partial reproductive

barrier was progressively established during rice domes-

tication to probably reinforce cultivar diversification. If so,

the questions of why and how the reproductive isolation

was strengthened by either natural or artificial selection or

both would be of great interest. The cloning and further
lications for cultivar improvement, Curr Opin Plant Biol (2013), http://dx.doi.org/10.1016/
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evolutionary analyses of genes involved in hybrid sterility

between the two subspecies should begin to provide

answers to these questions [19,20,21�,22].

Of cereal crops, there are examples of single and multiple

origins, for example, maize and barley, respectively

[23,24]. The origin of rice was complicated by the fact

that the same set of key domestication alleles presented

in the diverged genomic background. We now know that

extensive introgression followed by artificial and natural

selection was responsible for this apparently complex

pattern. However, the question of whether the snowbal-

ling or combination model was more close to the reality

had remained unanswered. A recent study that conducted

a large-scale survey of domestication loci lent a support to

the snowballing model and further suggested that japo-
nica was domesticated at first in southern China and the

subsequent introgression of the domestication alleles into

wild populations westward gave rise to indica [25��]. The

conclusion was drawn based on the result that a combined

analysis of conformed and candidate regions of major

domestication sweeps grouped both cultivars with O.
rufipogon populations in southern China.

While the evidence is convincing, there is still room for

further substantiating the hypothesis. As the number of

conformed domestication genes grows, each of the genes

can be phylogenetically analyzed to trace its origin.

Depending on the nature and proportion of these genes

traced back to the wild populations and how strongly the

relationship is supported, the hypotheses of single versus

multiple origins can be fully evaluated. Such an evalu-

ation should be conducted in the context of genetic and

ecological divergence of wild progenitors, which will help

us to bring together the whole picture of rice domesti-

cation.

The divergence of wild progenitors
The wild progenitors of cultivated rice were O. nivara and

O. rufipogon, two most closely related wild species with

the current distribution from southeastern Asia to India.

O. nivara was often regarded as an annual ecotype of O.
rufipogon in the literature partly because the correct

identification of the species was not always possible or

reliable for seeds distributed from the germplasm centers

[11,15,26]. Nevertheless, the two taxa are morphologi-

cally, physiologically, and ecologically distinct in the

natural habitats, experimental field, and greenhouses.

O. rufipogon, adapted to the stable, deep-water habitat,

is perennial, predominantly outcrossing, and photoperiod

sensitive [27,28]. O. nivara was derived from O. rufipogon
by adapting to the seasonally dry habitat in regions with a

clear monsoon season. In order to promptly complete the

life cycle in the unstable habitat, O. nivara went through a

series of adaptive steps and became an annual, self-

fertilized, and photoperiod insensitive species [27].

Unlike O. rufipogon that relies primarily on vegetative
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propagation for reproduction, O. nivara reproduces sexu-

ally and produces a larger number of bigger and heavier

seeds. In most of these characteristics, O. nivara is rather

similar to the cultivated rice and sometimes viewed as

weedy rice derived from crosses between O. rufipogon and

cultivars. This, however, was not supported by the recent

evolutionary studies of weedy rice [29,30].

Thus, domestication of rice from O. nivara would require

less phenotypic transitions than from O. rufipogon.

Genetic studies of crosses between indica and O. nivara
did not detect segregation in traits such mating systems,

suggesting the possibility of direct domestication of indica
from O. nivara [31]. With the results of genome-wide

analysis indicating the domestication of japonica rice

directly from O. rufipogon in southern China where there

is no natural distribution of O. nivara at the present time,

the role that O. nivara played in rice domestication

remains unclear. There are several possibilities.

First, O. nivara contributed little to rice domestication.

The phenotypic similarity between O. nivara and O.
sativa was selected in parallel by nature and human

and the targeted genes were largely the same for major

transitions such as the grain size and mating system.

Second, O. nivara served as the progenitor of indica.

However, because O. nivara had numerous properties

of cultivars, artificial selection was much weaker than

that for domesticating japonica from O. rufipogon. In fact,

grains from the natural populations of O. nivara were still

collected as food in certain areas of India [32]. As a result,

the majority of key domestication alleles could have

arisen during japonica domestication. The presumably

semi-domesticated indica became the primary recipient

of the domestication alleles when japonica was brought by

immigrants and grown in the same or near field. In this

case, there should be at least a small portion of domes-

tication alleles originated from O. nivara, which might

have been overwhelmed by japonica alleles in the com-

bined analysis of multiple chromosomal regions contain-

ing domestication genes [25��]. The single domestication

hypothesis can be further substantiated by ruling out this

alternative through separate phylogenetic analyses of

domestication genes with O. nivara included.

Genes targeted by artificial selection during
rice domestication
Evolutionary analyses of domestication related genes

should yield mechanistic insights into the efforts that

turned wild species into cultivars. These efforts were

probably unconsciously in most of the cases. With

advances in molecular breeding and biotechnology, we

can apply this knowledge to conscious efforts to improve

rice cultivars. A half century ago, a ‘one gene, one trait’

hypothesis was proposed for key domestication traits in

maize [33]. With the cloning of genes underlying these

critical phenotype transitions, the hypothesis gained
lications for cultivar improvement, Curr Opin Plant Biol (2013), http://dx.doi.org/10.1016/
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support from studying a number of key domestication

traits not only in maize but also in rice [2]. For domes-

tication traits such as non-shattering and tiller erectness,

QTL explaining the majority of phenotypic variance

harbor causal mutations from the sh4 and prog1 genes,

respectively [18,34,35].

That a major domestication transition of rice was con-

trolled primarily by one gene is especially striking given

that rice cultivars have distinct genomic backgrounds.

This further highlights the dynamic processes of rice

domestication. If domesticated rice is defined to be

one with the set of critical domestication alleles, evol-

utionary forces, including gene flow, artificial selection,

and natural selection, must have acted together to give

rise to this major food crop grown in the diverse climatic

conditions. The way that rice was domesticated through

rapidly spreading beneficial alleles and maintaining

genetic diversity at the same time can be borrowed by

modern rice breeding.

Genes underlying critical domestication traits often

encode transcription factors, and the causal mutations

are more likely functional modification rather than the

loss or gain of function [1,2]. The functional modification

of transcription factors can lead to a cascade of down-

stream changes that are capable of substantially altering

an important trait. The degree of modification needs to be

well balanced to optimize an agronomic trait. For

example, the weakened function of sh4 allowed grains

to stay on straws at the time of harvest and to be sub-

sequently separated from straws during threshing.

Genes underlying the loss of coloration contributed to a

part of the domestication syndrome in cereal crops. The

loss involves both hulls and pericarps, with the former

changed from black to straw white and the latter changed

from red to white. The change of hull colors was con-

trolled by two genes, Bh4 and Phr1, while the change of

pericarp colors was controlled by Rc and Rd genes [36–39].

Interestingly, they share two features different from sh4
and prog1, that is, multiple loss-of-function mutations of

each coloration gene were selected during domestication.

Of the multiple mutations of a gene, there are one

predominant allele and other low-frequency alleles of

independent origins [36,40]. Thus, for loss-of-function

mutations that are functionally equivalent, selective

sweep was not as strong or complete as critical functional

modification of sh4 or prog1.

Grain size was also a target of artificial selection. Two

genes, GS3 and SW5, were responsible for the increase in

grain length and width, respectively [41,42]. A single loss-

of-function mutation of each gene was selected during

rice domestication. Unlike genes controlling other

aspects of the domestication syndrome discussed above,

the derived alleles of GS3 and SW5 conferring longer and
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wider grains occurred in much lower frequencies in

cultivated rice. Additionally, the derived alleles have

higher frequencies in japonica than indica, which was

explained by their origins in japonica. Even within japo-
nica, the frequencies of the domestication alleles of the

two genes are variable, with that of GS3 occurring fre-

quently in tropical japonica but rarely in temperate japo-
nica and that of SW5 the other way around [43,44]. There

are several explanations for this. First, the increase in

grain size ran into some limitation such as limited source

availability in cultivars with relatively low biomass or a

tradeoff between grain size and grain number. Second,

the preference of diverse grain shapes led to resistance to

the spreading of these alleles in certain cultivars. Third,

there were additional genes contributing to grain size

increase during domestication.

qSH1 is another gene involved in the reduction of shat-

tering [45]. However, the non-shattering allele did not

spread in all cultivars like sh4, but was found only in a

portion of temperate japonica [18]. In addition to sh4, this

allele further reduces shattering, and consequently

requires stronger threshing force to separate and recover

grains from straw. This may be beneficial for cultivars that

would otherwise suffer significant yield loss by relatively

easy shattering under certain growing conditions. How-

ever, it could be disadvantageous for cultivars that lost

more grains due to incomplete threshing caused by this

allele. Thus, even though an allele can enhance a dom-

estication trait, it may only be selectively advantageous in

certain genomic background, under certain climatic con-

ditions, or for certain agricultural practice.

A somewhat surprising finding in domestication genes

was that the semidwarf allele, sd1, responsible for the

green revolution taking place a half century ago was also

targeted by artificial selection during rice domestication

[46�]. An allele reducing tiller length experienced a se-

lective sweep in japonica. The wild progenitor, O. rufipo-
gon, growing in the deep-water habitat is much taller than

the cultivated rice. The tillers of O. rufipogon lodge easily

and new tillers and roots grow out from the internodes,

which provides the means of vegetative propagation of

the species [27]. This trait is obviously disadvantageous

for cultivation and it makes sense during rice domesti-

cation that the semidwarf allele was selected and became

fixed in japonica. It is remarkable that the alleles of the

similar function were targeted twice in the history of rice

evolution, once by early farmers who might have selected

an allele unconsciously during domestication and again by

modern rice breeders who purposely spread another allele

and led to the revolutionary improvement of yield [47,48].

It was probably also surprising that such a beneficial allele

was barely spread into the landraces of indica. A partial

reproductive barrier was hypothesized to have prevented

the introgression of the allele from japonica to indica [46�].
lications for cultivar improvement, Curr Opin Plant Biol (2013), http://dx.doi.org/10.1016/
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This, however, does not seem to be an adequate expla-

nation because several other domestication alleles were

fixed or reached high frequencies in both cultivars.

Another hypothesis was that having sd1 allele and con-

sequently a reduced level of growth hormone, gibberellin,

might be adaptively disadvantageous for indica landraces

planted in the rainfed upland [48]. There is one additional

possibility. The wild species, O. nivara, which might have

played a role in the origin of indica, was a short annual

plant that did not have the lodging habit [31]. Thus, it was

possible that sd1 from japonica was indeed disadvanta-

geous for indica cultivars under the ancient cultivation

conditions [26].

Implications for rice improvement
One important lesson that we can learn from the evol-

utionary analyses of rice domestication is the conscious and

unconscious maintenance of genetic diversity of cultivars.

No matter whether rice domestication initiated at one or

multiple locations, diverse cultivars were developed and

maintained throughout the history of rice cultivation.

Particularly, indica has a diverse genomic background,

which conceivably came from spreading the common set

of domestication alleles into the wild populations [25��].
Looking at this from another angle, it is the process that

increased the genetic diversity of cultivars. This somewhat

snowballing of genetic diversity that maintained and

widened local adaptation was most likely to have facilitated

the widespread of rice cultivars [16�].

Thus, it should be kept in mind in the future rice

breeding that genetic diversity of cultivars should be

maintained or increased. Given the sophisticated seed

distribution mechanisms at the present time, it is possible

that a small number of cultivars with superior perform-

ance in a few traits such as yield can quickly increase in

the area of cultivation. If this trend continues and further

narrows the genetic diversity of modern cultivars, we may

end up with lacking solutions to problems caused by the

appearance of new pests and diseases and the change of

local climates. Also because rice is a food crop that has

been grown in a wide range of climates and field con-

ditions, the future breeding practice should always con-

sider regional factors and diversify cultivars accordingly.

With rapid advances in genome technologies, molecular

design and marker-assisted breeding are opening enor-

mous opportunities for crop improvement. One of the

most instructive lessons learnt from the evolutionary

analyses of rice domestication is that a mutation modify-

ing the function of a transcription factor was responsible

primarily for the gain of an important domestication trait.

This is especially encouraging for the application of

molecular breeding as long as a suitable mutation can

be identified for improving an agronomic trait. Such

mutation may come from several sources, including wild

progenitors, landraces, and even modern cultivars. The
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development of effective means to discover and utilize

these mutations is critical to the success of molecular

breeding [49,50].

A widely practiced approach is making crosses between

diverged cultivars, especially between indica and japonica,

and subsequently conduct QTL mapping for traits of

interest [51]. This has been an effective approach for the

identification of numerous valuable alleles for rice im-

provement. The limitation of this approach was that

genotyping and fine mapping were time consuming.

The second-generation sequencing technologies have

begun to lift this limitation [52,53�]. If the efficiency of

gene cloning from a mapping population is substantially

improved, the matter then is to evaluate extensively

cultivars including landraces for valuable traits such as

high water and nutrient use efficiencies and resistance to

disease and pests. This way of identifying useful

mutations is most suitable for those that have clear

phenotype but remain in low frequencies probably

because the cultivars carrying them perform poorly in

many other agronomic traits so that these cultivars have

not been selected for breeding elicit rice varieties. Redis-

covery of these cultivars from germplasm centers through

extensive phenotypic evaluation followed by effective

gene cloning should substantially enhance our ability to

breed green super rice [54].

If the alleles have moderate frequencies in traditional

cultivars and landraces, genome-wide association studies

(GWAS) may be utilized to directly identify valuable

genes. One basic requirement for GWAS is to genotype

all accessions sampled in the study. This has become

increasingly feasible for large sample sizes as low-cover-

age whole genome sequencing is proven a promising

method [55]. In order to take full advantage of this

approach, it is necessary to establish a set of cultivars

representing the entire diversity of cultivated rice in-

cluding traditional and modern cultivars [56�,57�]. Once

this set is genotyped by sequencing, they can be eval-

uated for any potentially useful traits, which are then

subjected to GWAS. It should be a worthwhile effort for

the international rice community to establish such a

genotyped collection and distribute germplasm for

GWAS of various traits worldwide.

The phenotypic evaluation of traits valuable for breeding

varieties such as green super-rice to meet the current and

future needs of sustainable agriculture should also be

extended to the wild progenitors of rice, O. rufipogon and

O. nivara. Because they cross easily with rice cultivars,

useful genes can be incorporated into cultivated rice

through molecular breeding. Once valuable traits are

identified in certain accessions of the wild species, they

can be either crossed with cultivars for gene cloning or

directly narrowed down in the sampled wild accession

using GWAS. The application of the GWAS in wild
lications for cultivar improvement, Curr Opin Plant Biol (2013), http://dx.doi.org/10.1016/
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species, however, is not as straightforward as in cultivars

because O. rufipogon is an outcrosser and has a high level

of heterozygosity. They would have to be vegetatively

maintained once genotyped, which increases practical

difficulty.

Fortunately, the annual species, O. nivara, is predomi-

nantly self-fertilized and suitable for GWAS. Thus, it will

be interesting to assemble a panel of O. nivara accessions

for GWAS, especially because the wild species has higher

genetic diversity than cultivars and consequently the

potential to harbor valuable genes for rice improvement

[49,58]. Whether the wild and cultivated panels can be

integrated for GWAS depends on whether the subpopu-

lation structure formed as a result of artificial selection can

be effectively dealt with in the analyses [56�,59].

A somewhat different approach to identify candidate

genes responsible for domestication and cultivar differ-

entiation is genome scan for selection signals [60]. By

identifying genomic regions with significantly reduced

genetic diversity of cultivars relative to the wild progeni-

tors, candidate genes targeted by artificial selection may

be located in the regions [12,61�]. Candidate genes

responsible for cultivar group differentiation may also

be identified through similar comparison between those

groups. This is a rapid approach for identifying potentially

useful genes, especially when powered by the availability

of dense SNP markers. However, function conformation

of the candidate genes requires additional work.

In conclusion, with rapid advances in DNA sequencing

technologies, evolutionary genomic analyses are becom-

ing increasingly powerful for discovering valuable alleles

from cultivated rice and its wild progenitors. The incorp-

oration of these alleles into cultivars through molecular

breeding holds enormous potential for rice improvement.

With the expansion of the allele pool and its intensified

utilization, we should approach a point where a large

number of alleles from the wild species and landraces

can be incorporated for developing cultivars meeting the

requirement of sustainable agriculture. This may be

viewed as the re-domestication of rice toward adequate

and sustainable production of the world’s staple food.
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