Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions. Molecular Plant ,2015, 8: 722–733
Wenzhong Xu, Wentao Dai, Huili Yan, Sheng Li, Hongling Shen, Yanshan Chen, Hua Xu, Yangyang Sun, Zhenyan He and Mi Ma*
Abstract:
In
Arabidopsis, the nodulin 26-like
intrinsic protein (NIP) subfamily of aquaporin proteins consists of nine members,
five of which (NIP1;1, NIP1;2, NIP5;1, NIP6;1, and NIP7;1) were previously
identified to be permeable to arsenite. However, the roles of NIPs in the
root-to-shoot translocation of arsenite in plants remain poorly understood. In
this study, using reverse genetic strategies, Arabidopsis NIP3;1 was identified to play an
important role in both the arsenic uptake and root-to-shoot distribution under
arsenite stress conditions. The nip3;1 loss-of-function mutants displayed obvious improvements in arsenite
tolerance for aboveground growth and accumulated less arsenic in shoots than
those of the wild-type plants, whereas the nip3;1 nip1;1 double mutant showed strong arsenite tolerance
and improved growth of both roots and shoots under arsenite stress conditions.
A promoter-b-glucuronidase analysis
revealed that NIP3;1 was expressed almost
exclusively in roots (with the exception of the root tips), and heterologous
expression in the yeast
Saccharomyces
cerevisiae demonstrated that NIP3;1
was able to mediate arsenite transport. Taken together, our results suggest
that NIP3;1 is involved in arsenite uptake and root-to-shoot translocation in Arabidopsis, probably as a passive
and bidirectional arsenite transporter.
全文链接
2015-08-18发布 阅读1475次