代占武 研究组葡萄品质改良与调控研究组

  代占武,男,博士,研究员,博士生导师。

2003年在山东农业大学获得学士学位,2005年在中国农业大学获得硕士学位,200812月和20092月在中国农业大学和和法国阿维尼翁大学获得博士学位。20093月至20102月在法国农业科学研究院(INRA)克莱蒙分院进行博士后研究,20103月至20193月在法国农业科学研究院(INRA)波尔多分院、波尔多葡萄与葡萄酒研究所(ISVV)任副研究员。20194月到中国科学院植物研究所工作,在Trends Plant Sci, New Phytol, Plant J, J Exp Bot, Tree Physiol 等刊物发表SCI论文50余篇。

联系方式: E-mail:  zhanwu.dai@ibcas.ac.cn; 电话: 010--62836521

主要研究工作:

1)葡萄种质与环境因子互作对果实品质调控机理研究

2)数学模型辅助的分子标记鉴定、候选基因发掘及基因功能分析

3)数学模型辅助的果实品质精准调控技术研发

研究组成员:

孔俊花 助理研究员

主持和参加的科研项目:

[1] “光对葡萄光合同化物分配和果实品质的调控机制,国家重点研发计划子课题(2019. 05-2022.12),资助金额 67万元;主持

[2] “碳供应和脱落酸联合处理对葡萄果实中糖-花色苷平衡的调控机理研究,国家自然基金面上项目(2021.01-2024.12),资助金额 58万元;主持

[3] “贺兰山东麓风土条件下酿酒葡萄品质形成机理研究 国家自然基金区域创新联合基金重点项目(2021.01-2024.12),资助金额 257万元;主持

[4] “中国-比利时-南非 酿酒葡萄主产区 气候特征与微生物多样性比较研究”, 国家重点研发计划国际合作重点项目(2021.07-2024.06), 资助金额 125 万元; 主持

[5] “酿酒葡萄品种多样性比较及区域化布局研究”, 宁夏科技厅育种专项 (2021.6-2025.12),资助金额 90万元; 主持

 发表论文:(*同等贡献,+通讯作者)                     

                                                                                      2023

[1]  Zhang C*, Dai Z*, Ferrier T*, Orduña L, Santiago A, Peris A, Wong DCJ, Kappel C, Savoi S, Loyola R, Amato A, Kozak B, Li M, Liang A, Carrasco D, Meyer-Regueiro C, Espinoza C, Hilbert G, Figueroa-Balderas R, Cantu D, Arroyo-Garcia R, Arce-Johnson P, Claudel P, Errandonea D, Rodríguez-Concepción M, Duchêne E, Huang S-sC, Castellarin SD, Tornielli GB, Barrieu F, Matus JT. 2023. MYB24 orchestrates terpene and flavonol metabolism as light responses to anthocyanin depletion in variegated grape berries. The Plant Cell in press.

[2] Yang W, Zhu J, van Leeuwen C, Dai Z+, Gambetta GA. 2023. GrapevineXL reliably predicts multi-annual dynamics of vine water status, berry growth, and sugar accumulation in vineyards. Horticulture Research 10, uhad071.

[3]  Liu M, Zhao Y, Fan P, Kong J, Wang Y, Xu X, Xu M, Wang L, Li S, Liang Z, Duan W, Dai Z+2023. Grapevine plantlets respond to different monochromatic lights by tuning photosynthesis and carbon allocation. Horticulture Research 10, uhad160.

[4]  Zhang Y, Liu C, Liu X, Wang Z, Wang Y, Zhong G-y, Li S, Dai Z+, Liang Z+, Fan P+2023Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. Horticulture Research 10, uhad151.

[5]  Dong Y, Duan S, Xia Q, Liang Z, Dong X, Margaryan K, Musayev M, Goryslavets S, Zdunić G, Bert P-F, Lacombe T, Maul E, Nick P, Bitskinashvili K, Bisztray GD, Drori E, De Lorenzis G, Cunha J, Popescu CF, Arroyo-Garcia R, Arnold C, Ergül A, Zhu Y, Ma C, Wang S, Liu S, Tang L, Wang C, Li D, Pan Y, Li J, Yang L, Li X, Xiang G, Yang Z, Chen B, Dai Z, Wang Y, Arakelyan A, Kuliyev V, Spotar G, Girollet N, Delrot S, Ollat N, This P, Marchal C, Sarah G, Laucou V, Bacilieri R, Röckel F, Guan P, Jung A, Riemann M, Ujmajuridze L, Zakalashvili T, Maghradze D, Höhn M, Jahnke G, Kiss E, Deák T, Rahimi O, Hübner S, Grassi F, Mercati F, Sunseri F, Eiras-Dias J, Dumitru AM, Carrasco D, Rodriguez-Izquierdo A, Muñoz G, Uysal T, Özer C, Kazan K, Xu M, Wang Y, Zhu S, Lu J, Zhao M, Wang L, Jiu S, Zhang Y, Sun L, Yang H, Weiss E, Wang S, Zhu Y, Li S, Sheng J, Chen W. 2023.

[6]  Liu W, Mu H, Yuan L, Li Y, Li Y, Li S, Ren C, Duan W, Fan P, Dai Z, Zhou Y, Liang Z, Li S, Wang L. 2023. VvBBX44 and VvMYBA1 form a regulatory feedback loop to balance anthocyanin biosynthesis in grape. Horticulture Research in press.

[7]  Liu J, Hochberg U, Ding R, Xiong D, Dai Z, Zhao Q, Chen J, Ji S, Kang S. 2023. Elevated CO2 concentration increases maize growth under water deficit or soil salinity but with a higher risk of hydraulic failure. Journal of Experimental Botany in press.

[8]  Ru X, Zhou J, Gong K, He Z, Dai Z, Li M, Feng X, Yu Q, Feng H, He J. 2023. Climate warming may accelerate apple phenology but lead to divergent dynamics in late-spring frost and poor pollination risks in main apple production regions of China. European Journal of Agronomy 150, 126945.                             

                                                                                     2022

[1]  Bai H, Gambetta GA, Wang Y, Kong J, Long Q, Fan P, Duan W, Liang Z, Dai Z+. 2022. Historical long-term cultivar×climate suitability data to inform viticultural adaptation to climate change. Scientific Data, 9, 271–271. IF5=11.212

[2]  Bai H, Sun Z, Yao X, Kong J, Wang Y, Zhang X, Chen W, Fan P, Li S, Liang Z, Dai Z+. 2022. Viticultural suitability analysis based on multi-source data highlights climate-change-induced decrease in potential suitable areas: a case analysis in Ningxia, China. Remote Sensing, 14, 3717. IF5=5.786

[3]  Tong Q, Liu L, Zhao Y, Kong J, Wang Y, Xu X, Hilbert G, Gomès E, Dai Z+. 2022. Transcriptome remodeling in response to leaf removal and exogenous abscisic acid in berries of grapevine (Vitis vinifera L.) fruit cuttings. Horticulturae, 8, 905. IF5=3.582

[4]  Wang L, Brouard E, Prodhomme D, Hilbert G, Renaud C, Petit J-P, Edwards E, Betts A, Delrot S, Ollat N, Guillaumie S, Dai Z+, Gomès E+. 2022. Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exogenous ABA application. Food Research International, 160, 111478. IF5=7.716

[5]  Zhang Y, Chang B-M, Burdet B, Dai Z, Delrot S, Keller M. 2022. Apoplastic sugar may be lost from grape berries and retrieved in pedicels. Plant Physiology, 190, 592–604. IF5=7.698

[6]  王勇健, 孔俊花, 范培格, 梁振昌, 金秀良, 刘布春, 代占武+. 2022. 葡萄表型组高通量获取及分析方法研究进展. 园艺学报, 49, 1815-1832

2021

[7]  Chen J, Beauvoit B, Génard M, Colombié S, Moing A, Vercambre G, Gomès E, Gibon Y, Dai Z+. 2021. Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fine‐tuned during fruit development. New Phytologist, 230, 1489–1502.

[8]  Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ, Delzon S, Bortolami G, Cochard H, Gambetta GA. 2021. Nighttime transpiration represents a negligible part of water loss and does not increase the risk of water stress in grapevine. Plant, Cell & Environment, 44, 387–398.

[9]  Kong J, Wu J, Guan L, Hilbert G, Delrot S, Fan P, Liang Z, Wu B, Matus JT, Gomès E, Dai Z+. 2021. Metabolite analysis reveals distinct spatio-temporal accumulation of anthocyanins in two teinturier variants of cv. ‘Gamay’ grapevines (Vitis vinifera L.). Planta, 253, 84.

[10]   Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. 2021. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). Planta, 253, 114.

[11]   Ren C, Li H, Wang Z, Dai Z, Lecourieux F, Kuang Y, Xin H, Li S, Liang Z. 2021. Characterization of chromatin accessibility and gene expression upon cold stress reveals that the RAV1 transcription factor functions in cold response in Vitis Amurensis. Plant & Cell Physiology, 62, 1615–1629.

[12]   Suter B, Destrac Irvine A, Gowdy M, Dai Z, van Leeuwen C. 2021. Adapting wine grape ripening to global change requires a multi-trait approach. Frontiers in Plant Science, 12, 624867.

[13]   Wang L, Brouard E, Hilbert G, Renaud C, Petit J ‐P., Edwards E, Betts A, Delrot S, Ollat N, Guillaumie S, Gomès E+, Dai Z+. 2021. Differential response of the accumulation of primary and secondary metabolites to leaf‐to‐fruit ratio and exogenous abscisic acid. Australian Journal of Grape and Wine Research, 27, 527–539.

[14]   Wang Y, Lecourieux F, Zhang R, Dai Z, Lecourieux D, Li S, Liang Z. 2021. Data comparison and software design for easy selection and application of CRISPR-based genome editing systems in plants. Genomics, Proteomics & Bioinformatics, 19, 937–948.

2020

[15]   Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ, Delzon S, Bortolami G, Cochard H, Gambetta GA .2020. The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. Journal of Experimental Botany, 71 (14):4333-4344.

[16]   Cakpo CB, Vercambre G, Baldazzi V, Roch L, Dai Z, Valsesia P, Memah M-M, Colombié S, Moing A, Gibon Y, Genard M. 2020. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. Annals of Botany, 126,455-470.

[17]   Roch L, Prigent S, Klose H, Cakpo C-B, Beauvoit B, Deborde C, Fouillen L, van Delft P, Jacob D, Usadel B, Dai Z, Genard M, Vercambre G, Colombié S, Moing A, Gibon Y .2020. Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. Journal of Experimental Botany, 71,5823-5836.

[18]   Ren C, Guo Y, Kong J, Lecourieux F, Dai Z, Li S, Liang Z. 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biology, 20 (1),47. doi:10.1186/s12870-020-2263-3.

2019

[19]   Suter B, Triolo R, Pernet D, Dai Z, Van Leeuwen C. 2019. Modeling stem water potential by separating the effects of soil water availability and climatic conditions on water status in grapevine (Vitis vinifera L.). Frontiers in Plant Science, 10,1485, doi:10.3389/fpls.2019.01485

[20]   Roch L, Dai Z, Gomès E, Bernillon S, Wang J, Gibon Y, Moing A. 2019. Fruit salad in the lab: Comparing botanical species to help deciphering fruit primary metabolism. Frontiers in Plant Science, 10, 836-836. doi: 10.3389/fpls.2019.00836.

[21]   Jing W, Julie D, Ghislaine H, Sabine G, Dai Z, Laurence G, Serge D, Philippe D, Cécile T, Philippe P. 2019. The effects of a moderate grape temperature increase on berry secondary metabolites. Oeno One, 53, 2.

[22]   Zhu J, Génard M, Poni S, Gambetta GA, Vivin P, Vercambre G, Trought MCT, Ollat N, Delrot S, Dai Z+. 2019. Modelling grape growth in relation to whole-plant carbon and water fluxes. Journal of Experimental Botany, 70, 2505-2521.

2018

[23]   Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, Liu X, Patra B, Wei Y, Li S, Wang L. 2018. VvWRKY8 represses stilbene synthase gene through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. Journal of Experimental Botany, 70, 715-729.

[24]   Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. 2018. Putting primary metabolism into perspective to obtain better fruits. Annals of Botany, 122, 1-21.

[25]   Noronha H, Silva A, Dai Z, Gallusci P, Rombolà AD, Delrot S, Gerós H. 2018. A molecular perspective on starch metabolism in woody tissues. Planta, 248, 559-568.

[26]   Soubeyrand E, Colombié S, Beauvoit B, Dai Z, Cluzet S, Hilbert G, Renaud C, Maneta-Peyret L, Dieuaide M, Mérillon J-M, Gibon Y, Delrot S, Gomès E. 2018. Constraint-based modeling highlights cell energy, redox status and α-ketoglutarate availability as metabolic drivers for anthocyanin accumulation in grape cells under nitrogen limitation. Frontiers in Plant Science, 9,421. (doi: 10.3389/fpls.2018.00421).

[27]   Zhu J, Dai Z+, Vivin P, Gambetta GA, Henke M, Peccoux A, Ollat N, Delrot S. 2018. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchanges Annals of Botany, 121,833-848 (doi: 10.1093/aob/mcx1141).

[28]   Peccoux A, Loveys B, Zhu J, Gambetta GA, Delrot S, Vivin P, Schultz HR, Ollat N+, Dai Z+. 2018. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 38, 1026-1040.

[29]   Poni S, Gatti M, Palliotti A, Dai Z, Duchêne E, Truong T-T, Ferrara G, Matarrese AMS, Gallotta A, Bellincontro A, Mencarelli F, Tombesi S. 2018. Grapevine quality: A multiple choice issue. Scientia Horticulturae, 234,445-462.

2017

[30]   Gallusci P*+, Dai Z*+, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel-Muguet S*+. 2017. Epigenetics for plant improvement: Current knowledge and modeling avenues. Trends in Plant Science, 22, 610-623.

[31]   Guan L, Wu B, Hilbert G, Li S, Gomès E, Delrot S, Dai Z+. 2017. Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype- and tissue-dependent manner. Food Research International, 98, 2-9.

[32]   Silva A, Noronha H, Dai Z, Delrot S, Gerós H. 2017. Low source–sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels. Planta, 246, 525-535.

[33]   Vivin P, Lebon É, Dai Z, Duchêne E, Marguerit E, García de Cortázar-Atauri I, Zhu J, Simonneau T, van Leeuwen C, Delrot S, Ollat N. 2017. Combining ecophysiological models and genetic analysis: a promising way to dissect complex adaptive traits in grapevine. Oeno One, 51, 181-189.

[34]   Cochetel N, Escudie F, Cookson SJ, Dai Z, Vivin P, Bert P-F, Munoz MS, Delrot S, Klopp C, Ollat N, Lauvergeat V. 2017. Root transcriptomic responses of grafted grapevines to heterogeneous nitrogen availability depend on rootstock genotype. Journal of Experimental Botany, 68, 4339-4355.

2016

[35]   Dai Z+, Wu H, Baldazzi V, van Leeuwen C, Bertin N, Gautier H, Wu B, Duchêne E, Gomès E, Delrot S, Lescourret F, Génard M. 2016. Inter-species comparative analysis of components of soluble sugar concentration in fleshy fruits. Frontiers in Plant Science, 7, 649.

[36]   Guan L*, Dai Z*+, Wu B-H, Wu J, Merlin I, Hilbert G, Renaud C, Gomès E, Edwards E, Li S-H, Delrot S. 2016. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta, 243, 23-41.

[37]   Martínez-Lüscher J, Kizildeniz T, Vucetic V, Dai Z, Luedeling E, van Leeuwen C, Gomès E, Pascual I, Juan José I, Morales F, Delrot S. 2016. Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration. Frontiers in Environmental Science, 4, 48.

2015

[38]   Dai Z*, Plessis A*, Vincent J, Duchateau N, Besson A, Dardevet M, Prodhomme D, Gibon Y, Hilbert G, Pailloux M, Ravel C, Martre P. 2015. Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. The Plant Journal, 83, 326-343.

[39]   Bobeica N, Poni S, Hilbert G, Renaud C, Gomès E, Delrot S, Dai Z+. 2015. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Frontiers in Plant Science, 6, 382.

[40]    Berdeja M, Nicolas P, Kappel C, Dai Z, Hilbert G, Peccoux A, Lafontaine M, Ollat N, Gomès E, Delrot S. 2015. Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2, 15012.

[41]   Su L, Dai Z, Li S, Xin H. 2015. A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biology, 15, 82.

[42]   Vincent J, Martre P, Gouriou B, Ravel C, Dai Z, Petit J-M, Pailloux M. 2015. RulNet: A Web-Oriented Platform for Regulatory Network Inference, Application to Wheat-Omics Data. PLoS ONE, 10, e0127127.

2014

[43]   Dai ZW+, Meddar M, Renaud C, Merlin I, Hilbert G, Delrot S, Gomès E. 2014. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany, 65, 4665-4677.

[44]   Prudent M*, Dai ZW*, Génard M, Bertin N, Causse M, Vivin P. 2014. Resource competition modulates the seed number-fruit size relationship in a genoty pedependent manner: a modeling approach in grape and tomato. Ecological Modelling, 290, 54-64, doi: 10.1016/j.ecolmodel.2013.10.023

[45]   Berdeja M, Hilbert G, Dai ZW, Lafontaine M, Stoll M, Schultz HR, Delrot S. 2014. Effect of water stress and rootstock genotype on Pinot noir berry composition. Australian Journal of Grape and Wine Research, 20, 409-421.

[46]   Guan L, Li J-H, Fan P-G, Li S-H, Fang J-B, Dai Z-W, Delrot S, Wang L-J, Wu B-H. 2014. Regulation of anthocyanin biosynthesis in tissues of a teinturier grape cultivar under sunlight exclusion. American Journal of Enology and Viticulture, 65, 363-374.

[47]   Kuhn N, Guan L, Dai ZW, Wu B-H, Lauvergeat V, Gomès E, Li S-H, Godoy F, Arce-Johnson P, Delrot S. 2014. Berry ripening: recently heard through the grapevine. Journal of Experimental Botany 65, 4543-4559.

[48]   Xi H, Ma L, Liu G, Wang N, Wang J, Wang L, Dai Z, Li S, Wang L. 2014. Transcriptomic analysis of grape (Vitis vinifera L.) leaves after exposure to ultraviolet C irradiation. PLoS ONE, 9, e113772.

2013

[49]   Dai ZW, Léon C, Feil R, Lunn JE, Delrot S, Gomès E. 2013. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. Journal of Experimental Botany, 64, 1345-1355.

[50]   Vincent J, Dai Z, Ravel C, Choulet F, Mouzeyar S, Bouzidi MF, Agier M, Martre P. 2013. dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts. Database, 2013.

2012

[51]   Liu G-T, Wang J-F, Cramer G, Dai ZW, Duan W, Xu H-G, Wu B-H, Fan P-G, Wang L-J, Li S-H. 2012. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biology, 12, 174.

2011

[52]   Dai ZW, Ollat N, Gomès E, Decroocq S, Tandonnet J-P, Bordenave L, Pieri P, Hilbert G, Kappel C, van Leeuwen C, Vivin P, Delrot S. 2011. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. American Journal of Enology and Viticulture, 62, 413-425.

2010及以前

[53]   Dai ZW, Vivin P, Barrieu F, Ollat N, Delrot S. 2010. Physiological and modelling approaches to understand water and carbon fluxes during grape berry growth and quality development: a review. Australian Journal of Grape and Wine Research, 16, 70-85.

[54]   Dai ZW, Génard M, Li SH, Vivin P. 2009. Analyzing the functional association among seed traits, berry growth and chemical composition in Cabernet-Sauvignon berry (Vitis vinifera L.) using a mathematical growth function. Journal International des Sciences de la Vigne et du Vin, 43, 35-44.

[55]   Dai ZW, Vivin P, Robert T, Milin S, Li SH, Génard M. 2009. Model-based analysis of sugar accumulation in response to source-sink ratio and water supply in grape (Vitis vinifera) berries. Functional Plant Biology, 36, 527-540.

[56]   Yuan JH*, Dai ZW*, Zhao JY, Li SH. 2009. Distribution of newly fixed 14C-photoassimilate under deficit irrigation and half-root stress in peach trees. Plant Science, 177, 691-697. (co-first author)

[57]   Zhao JY, Dai ZW, Li SH, Kong Y. 2008. Artificially-induced leaf nitrate accumulation affects photosynthesis in micropropagated apply plants with different water supply. Journal of Horticultural Science & Biotechnology, 83, 435-440.

[58]   Dai ZW, Wang LJ, Zhao JY, Fan PG, Li SH. 2007. Effect and after-effect of water stress on the distribution of newly-fixed 14C-photoassimilate in micropropagated apple plants. Environmental and Experimental Botany, 60, 484-494.

[59]  Zhao JY, Wang LJ, Fan PG, Dai ZW, Li SH. 2006. Effect of half and whole root drying on photosynthesis, nitrate concentration, and nitrate reductase activity in roots and leaves of micropropagated apple plants. Journal of the American Society for Horticultural Science, 131, 709-715.