LaMYC7, a positive regulator of linalool and caryophyllene biosynthesis, confers plant resistance to Pseudomonas syringae

LaMYC7, a positive regulator of linalool and caryophyllene biosynthesis, confers plant resistance to Pseudomonas syringae. Dong YM, Wei ZL, Zhang WY, Li JR, Han MX, Bai HT, Li H*, Shi L*, Horticulture Research, 2024, 11(4): uhae044. 

论文摘要: 

Linalool and caryophyllene are the main monoterpene and sesquiterpene compounds in lavender; however, the genes regulating their biosynthesis still remain many unknowns. Here, we identified LaMYC7, a positive regulator of linalool and caryophyllene biosynthesis, confers plant resistance to Pseudomonas syringae. LaMYC7 was highly expressed in glandular trichomes, and LaMYC7 overexpression could significantly increase the linalool and caryophyllene contents and reduce susceptibility to P. syringae in Nicotiana. In addition, the linalool possessed antimicrobial activity against P. syringae growth and acted dose-dependently. Further analysis demonstrated that LaMYC7 directly bound to the promoter region of LaTPS76, which encodes the terpene synthase (TPS) for caryophyllene biosynthesis, and that LaTPS76 was highly expressed in glandular trichomes. Notably, the LaMYC7 promoter contained hormone and stress-responsive regulatory elements and responded to various treatments, including ultraviolet, low temperature, salt, drought, methyl jasmonate, and P. syringae infection treatments. Under these treatments, the changes in the linalool and caryophyllene contents were similar to those in LaMYC7 transcript abundance. Based on the results, LaMYC7 could respond to P. syringae infection in addition to being involved in linalool and caryophyllene biosynthesis. Thus, the MYC transcription factor gene LaMYC7 can be used in the breeding of high-yielding linalool and caryophyllene lavender varieties with pathogen resistance.

全文链接:https://academic.oup.com/hr/article/11/4/uhae044/7606909?login=true